0=-16t^2+150t+4

Simple and best practice solution for 0=-16t^2+150t+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+150t+4 equation:



0=-16t^2+150t+4
We move all terms to the left:
0-(-16t^2+150t+4)=0
We add all the numbers together, and all the variables
-(-16t^2+150t+4)=0
We get rid of parentheses
16t^2-150t-4=0
a = 16; b = -150; c = -4;
Δ = b2-4ac
Δ = -1502-4·16·(-4)
Δ = 22756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{22756}=\sqrt{4*5689}=\sqrt{4}*\sqrt{5689}=2\sqrt{5689}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-2\sqrt{5689}}{2*16}=\frac{150-2\sqrt{5689}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+2\sqrt{5689}}{2*16}=\frac{150+2\sqrt{5689}}{32} $

See similar equations:

| 7(8x+9)=9x | | 4p(1+2p)=0 | | 3x+162=180 | | -4b+2+3=33 | | 13x=23x13 | | 0.06=33x | | y^2+12y-12=0 | | 3k+9k=33 | | 5/7n=83/5 | | 2x-13=-3+x | | .25x=148 | | (h+14)+()+14=()+14+160 | | 8x/2=16 | | x+(x+4)-6=50 | | (1/3)g+6=12 | | -3v+7=22 | | -3v+7=2 | | 7=z−79/2 | | y=4(5)-2 | | 24=8(g-86) | | x+3=5x-12 | | 4(p+6)=80 | | 8x+66°=90° | | 5=g/3-3 | | 2=g-94/2 | | 32=g/4+26 | | 32=g4+ 26 | | r/9+28=36 | | 81=9(q-86) | | 4^5x=1500 | | w4+ 4=8 | | 3y+17=82 |

Equations solver categories